Modern Crypto Course



Online Crypto by Stanford

Cryptography by IIT

Crypto Book


Mind Map

[实验一、Shamir 秘密共享]


实现一个(k,n)-Shamir 秘密共享方案,其中k=3,n=4,包含以下功能:

  1. 给定一个数字,可以计算出对应的share
  2. 给定k个share, 能够重构出秘密值


要建立一个 (k, n) 秘密共享方案,可以构建一个 k-1 次多项式,并在曲线上挑选 n 个点作为 share,这样只有当 k 个或更多的份额被集中起来时,多项式才能被重新生成。秘密值 (s) 被隐藏在多项式的常数项中(也即曲线在 y 轴截距),只有在成功重建曲线后才能获得。

To establish a (t, n) secret sharing scheme, we can construct a polynomial of degree t-1 and pick n points on the curve as shares such that the polynomial will only be regenerated if t or more shares are pooled. The secret value (s) is concealed in the constant term of the polynomial (coefficient of 0-degree term or the curve’s y-intercept) which can only be obtained after the successful reconstruction of the curve.

[实验三、实现 AES 的 CBC 和 CTR 模式加解密]

评论正在加载中...如果评论较长时间无法加载,你可以 搜索对应的 issue 或者 新建一个 issue