Modern Crypto Course
文章目录
Materials
[实验一、Shamir 秘密共享]
实验要求
实现一个(k,n)-Shamir 秘密共享方案,其中k=3,n=4,包含以下功能:
- 给定一个数字,可以计算出对应的share
- 给定k个share, 能够重构出秘密值
实验原理
https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing
要建立一个 (k, n) 秘密共享方案,可以构建一个 k-1 次多项式,并在曲线上挑选 n 个点作为 share,这样只有当 k 个或更多的份额被集中起来时,多项式才能被重新生成。秘密值 (s) 被隐藏在多项式的常数项中(也即曲线在 y 轴截距),只有在成功重建曲线后才能获得。
To establish a (t, n) secret sharing scheme, we can construct a polynomial of degree t-1 and pick n points on the curve as shares such that the polynomial will only be regenerated if t or more shares are pooled. The secret value (s) is concealed in the constant term of the polynomial (coefficient of 0-degree term or the curve’s y-intercept) which can only be obtained after the successful reconstruction of the curve.
https://www.geeksforgeeks.org/implementing-shamirs-secret-sharing-scheme-in-python/
评论正在加载中...如果评论较长时间无法加载,你可以 搜索对应的 issue 或者 新建一个 issue 。